Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38730560

RESUMEN

The postictal state, an abnormal cerebral condition following a seizure until the return to the interictal baseline, is frequently overlooked, despite often exceeding ictal duration and significantly impacting patients' lives. This study analyzes stereo-EEG (SEEG) signal dynamics using permutation entropy to quantify recovery time (postictal alteration time - PAT) in focal epilepsy and its clinical correlations. The average PAT was 4.5 min, extending up to an hour and was highest in temporal epilepsy and hippocampal sclerosis. Correlating with age at seizure onset and at SEEG, PAT provides a solution for operationally defining the postictal state and guiding interventions.

2.
Sci Rep ; 14(1): 4071, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374380

RESUMEN

Stereoelectroencephalography is a powerful intracerebral EEG recording method for the presurgical evaluation of epilepsy. It consists in implanting depth electrodes in the patient's brain to record electrical activity and map the epileptogenic zone, which should be resected to render the patient seizure-free. Stereoelectroencephalography has high spatial accuracy and signal-to-noise ratio but remains limited in the coverage of the explored brain regions. Thus, the implantation might provide a suboptimal sampling of epileptogenic regions. We investigate the potential of improving a suboptimal stereoelectroencephalography recording by performing source localization on stereoelectroencephalography signals. We propose combining independent component analysis, connectivity measures to identify components of interest, and distributed source modelling. This approach was tested on two patients with two implantations each, the first failing to characterize the epileptogenic zone and the second giving a better diagnosis. We demonstrate that ictal and interictal source localization performed on the first stereoelectroencephalography recordings matches the findings of the second stereo-EEG exploration. Our findings suggest that independent component analysis followed by source localization on the topographies of interest is a promising method for retrieving the epileptogenic zone in case of suboptimal implantation.


Asunto(s)
Epilepsia , Humanos , Epilepsia/diagnóstico , Epilepsia/cirugía , Técnicas Estereotáxicas , Electroencefalografía/métodos , Encéfalo , Electrodos Implantados
3.
Clin EEG Neurosci ; 55(2): 272-277, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37340756

RESUMEN

We present a case of a patient with focal non-motor emotional seizures with dacrystic expression in the context of drug-resistant magnetic resonance imaging negative epilepsy. The pre-surgical evaluation suggested a hypothesis of a right fronto-temporal epileptogenic zone. Stereoelectroencephalography recorded dacrystic seizures arising from the right anterior operculo-insular (pars orbitalis) area with secondary propagation to temporal and parietal cortices during the dacrystic behavior. We analyzed functional connectivity during the ictal dacrystic behavior and found an increase of the functional connectivity within a large right fronto-temporo-insular network, broadly similar to the "emotional excitatory" network. It suggests that focal seizure, potentially, from various origins but leading to disorganization of these physiological networks may generate dacrystic behavior.


Asunto(s)
Epilepsia Refractaria , Epilepsias Parciales , Humanos , Electroencefalografía/métodos , Convulsiones , Lóbulo Parietal , Imagen por Resonancia Magnética/métodos
4.
Ann Clin Transl Neurol ; 10(11): 2114-2126, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37735846

RESUMEN

OBJECTIVE: Stereoelectroencephalography (SEEG) is the reference method in the presurgical exploration of drug-resistant focal epilepsy. However, prognosticating surgery on an individual level is difficult. A quantified estimation of the most epileptogenic regions by searching for relevant biomarkers can be proposed for this purpose. We investigated the performances of ictal (Epileptogenicity Index, EI; Connectivity EI, cEI), interictal (spikes, high-frequency oscillations, HFO [80-300 Hz]; Spikes × HFO), and combined (Spikes × EI; Spikes × cEI) biomarkers in predicting surgical outcome and searched for prognostic factors based on SEEG-signal quantification. METHODS: Fifty-three patients operated on following SEEG were included. We compared, using precision-recall, the epileptogenic zone quantified using different biomarkers (EZq ) against the visual analysis (EZC ). Correlations between the EZ resection rates or the EZ extent and surgical prognosis were analyzed. RESULTS: EI and Spikes × EI showed the best precision against EZc (0.74; 0.70), followed by Spikes × cEI and cEI, whereas interictal markers showed lower precision. The EZ resection rates were greater in seizure-free than in non-seizure-free patients for the EZ defined by ictal biomarkers and were correlated with the outcome for EI and Spikes × EI. No such correlation was found for interictal markers. The extent of the quantified EZ did not correlate with the prognosis. INTERPRETATION: Ictal or combined ictal-interictal markers overperformed the interictal markers both for detecting the EZ and predicting seizure freedom. Combining ictal and interictal epileptogenicity markers improves detection accuracy. Resection rates of the quantified EZ using ictal markers were the only statistically significant determinants for surgical prognosis.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Hemisferectomía , Humanos , Electroencefalografía/métodos , Epilepsia Refractaria/cirugía , Biomarcadores
5.
Cortex ; 164: 1-10, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37146544

RESUMEN

Research into the neuroanatomical basis of emotions has resulted in a plethora of studies over the last twenty years. However, studies about positive emotions and pleasant sensations remain rare and their anatomical-functional bases are less understood than that of negative emotions. Pleasant sensations can be evoked by electrical brain stimulations (EBS) during stereotactic electroencephalography (SEEG) performed for pre-surgical exploration in patients with drug-resistant epilepsy. We conducted a retrospective analysis of 10 106 EBS performed in 329 patients implanted with SEEG in our epileptology department. We found that 13 EBS in 9 different patients evoked pleasant sensations (.60% of all responses). By contrast we collected 111 emotional responses of negative valence (i.e., 5.13% of all responses). EBS evoking pleasant sensations were applied at 50 Hz with an average intensity of 1.4 ± .55 mA (range .5-2 mA). Pleasant sensations were reported by nine patients of which three patients presented responses to several EBS. We found a male predominance among the patients reporting pleasant sensations and a prominent role of the right cerebral hemisphere. Results show the preponderant role of the dorsal anterior insula and amygdala in the occurrence of pleasant sensations.


Asunto(s)
Corteza Cerebral , Emociones , Humanos , Masculino , Femenino , Corteza Cerebral/fisiología , Estudios Retrospectivos , Emociones/fisiología , Electroencefalografía/métodos , Sensación/fisiología , Estimulación Eléctrica/métodos , Encéfalo
6.
Clin Neurophysiol ; 150: 176-183, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37075682

RESUMEN

OBJECTIVE: To evaluate the respective roles of the anterior thalamic nucleus (ANT) and the medial pulvinar (PuM) during mesial temporal lobe seizures recorded by stereoelectroencephalography (SEEG). METHODS: We assessed functional connectivity (FC) in 15 SEEG recorded seizures from 6 patients using a non-linear correlation method. Functional interactions were explored between the mesial temporal region, the temporal neocortex, ANT and PuM. The node total-strength (the summed connectivity of the node with all other nodes) as well as the directionality of the links (IN and OUT strengths) were calculated to estimate drivers and receivers during the cortico-thalamic interactions. RESULTS: Significant increased thalamo-cortical FC during seizures was observed, with the node total-strength reaching a maximum at seizure end. There was no significant difference in global connectivity values between ANT and PuM. Regarding directionality, significantly higher thalamic IN strength values were observed. However, compared to ANT, PuM appeared to be the driver at the end of seizures with synchronous termination. CONCLUSIONS: This work demonstrates that during temporal seizures, both thalamic nuclei are highly connected with the mesial temporal region and that PuM could play a role in seizure termination. SIGNIFICANCE: Understanding functional connectivity between the mesial temporal and thalamic nuclei could contribute to the development of target-specific deep brain stimulation strategies for drug-resistant epilepsy.


Asunto(s)
Núcleos Talámicos Anteriores , Epilepsia del Lóbulo Temporal , Pulvinar , Humanos , Pulvinar/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Convulsiones , Lóbulo Temporal , Núcleos Talámicos , Núcleos Talámicos Anteriores/diagnóstico por imagen
7.
Hum Brain Mapp ; 44(7): 2936-2959, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36852645

RESUMEN

An increasing amount of recent research has focused on the multisensory and neural bases of the bodily self. This pre-reflective form of self is considered as multifaceted, incorporating phenomenal components, such as self location, body ownership, first-person perspective, agency, and the perceptual body image. Direct electrical brain stimulation (EBS) during presurgical evaluation of epilepsy and brain tumor resection is a unique method to causally relate specific brain areas to the various phenomenal components of the bodily self. We conducted a systematic review of the literature describing altered phenomenal experience of the bodily self evoked by EBS. We included 42 articles and analyzed self reports from 221 patients. Three-dimensional density maps of EBS revealed that stimulation in the middle cingulum, inferior parietal lobule, supplementary motor area, posterior insula, hippocampal complex/amygdala, and precuneus most consistently altered one or several components of the bodily self. In addition, we found that only EBS in the parietal cortex induced disturbances of all five components of the bodily self considered in this review article. These findings inform current neuroscientific models of the bodily self.


Asunto(s)
Imagen Corporal , Encéfalo , Humanos , Encéfalo/fisiología , Lóbulo Parietal/fisiología , Técnicas Estereotáxicas , Estimulación Eléctrica
8.
Sci Transl Med ; 15(680): eabp8982, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36696482

RESUMEN

Precise estimates of epileptogenic zone networks (EZNs) are crucial for planning intervention strategies to treat drug-resistant focal epilepsy. Here, we present the virtual epileptic patient (VEP), a workflow that uses personalized brain models and machine learning methods to estimate EZNs and to aid surgical strategies. The structural scaffold of the patient-specific whole-brain network model is constructed from anatomical T1 and diffusion-weighted magnetic resonance imaging. Each network node is equipped with a mathematical dynamical model to simulate seizure activity. Bayesian inference methods sample and optimize key parameters of the personalized model using functional stereoelectroencephalography recordings of patients' seizures. These key parameters together with their personalized model determine a given patient's EZN. Personalized models were further used to predict the outcome of surgical intervention using virtual surgeries. We evaluated the VEP workflow retrospectively using 53 patients with drug-resistant focal epilepsy. VEPs reproduced the clinically defined EZNs with a precision of 0.6, where the physical distance between epileptogenic regions identified by VEP and the clinically defined EZNs was small. Compared with the resected brain regions of 25 patients who underwent surgery, VEP showed lower false discovery rates in seizure-free patients (mean, 0.028) than in non-seizure-free patients (mean, 0.407). VEP is now being evaluated in an ongoing clinical trial (EPINOV) with an expected 356 prospective patients with epilepsy.


Asunto(s)
Encéfalo , Epilepsia Refractaria , Epilepsias Parciales , Medicina de Precisión , Humanos , Teorema de Bayes , Encéfalo/diagnóstico por imagen , Encéfalo/cirugía , Epilepsias Parciales/diagnóstico por imagen , Epilepsias Parciales/cirugía , Estudios Retrospectivos , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/cirugía , Modelos Biológicos , Aprendizaje Automático
9.
Neuroimage ; 265: 119806, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36513288

RESUMEN

Magnetoencephalography (MEG) is a powerful tool for estimating brain connectivity with both good spatial and temporal resolution. It is particularly helpful in epilepsy to characterize non-invasively the epileptic networks. However, using MEG to map brain networks requires solving a difficult inverse problem that introduces uncertainty in the activity localization and connectivity measures. Our goal here was to compare independent component analysis (ICA) followed by dipole source localization and the linearly constrained minimum-variance beamformer (LCMV-BF) for characterizing regions with interictal epileptic activity and their dynamic connectivity. After a simulation study, we compared ICA and LCMV-BF results with intracerebral EEG (stereotaxic EEG, SEEG) recorded simultaneously in 8 epileptic patients, which provide a unique 'ground truth' to which non-invasive results can be confronted. We compared the signal time courses extracted applying ICA and LCMV-BF on MEG data to that of SEEG, both for the actual signals and the dynamic connectivity computed using cross-correlation (evolution of links in time). With our simulations, we illustrated the different effect of the temporal and spatial correlation among sources on the two methods. While ICA was more affected by the temporal correlation but robust against spatial configurations, LCMV-BF showed opposite behavior. Moreover, ICA seems more suited to retrieve the simulated networks. In case of real patient data, good MEG/SEEG correlation and good localization were obtained in 6 out of 8 patients. In 4 of them ICA had the best performance (higher correlation, lower localization distance). In terms of dynamic connectivity, the evolution in time of the cross-correlation links could be retrieved in 5 patients out of 6, however, with more variable results in terms of correlation and distance. In two patients LCMV-BF had better results than ICA. In one patient the two methods showed equally good outcomes, and in the remaining two patients ICA performed best. In conclusion, our results obtained by exploiting simultaneous MEG/SEEG recordings suggest that ICA and LCMV-BF have complementary qualities for retrieving the dynamics of interictal sources and their network interactions.


Asunto(s)
Epilepsia , Magnetoencefalografía , Humanos , Magnetoencefalografía/métodos , Encéfalo , Electroencefalografía/métodos , Mapeo Encefálico/métodos
10.
Hum Brain Mapp ; 44(2): 825-840, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36217746

RESUMEN

Whole brain ionic and metabolic imaging has potential as a powerful tool for the characterization of brain diseases. We combined sodium MRI (23 Na MRI) and 1 H-MR Spectroscopic Imaging (1 H-MRSI), assessing changes within epileptogenic networks in comparison with electrophysiologically normal networks as defined by stereotactic EEG (SEEG) recordings analysis. We applied a multi-echo density adapted 3D projection reconstruction pulse sequence at 7 T (23 Na-MRI) and a 3D echo-planar spectroscopic imaging sequence at 3 T (1 H-MRSI) in 19 patients suffering from drug-resistant focal epilepsy who underwent presurgical SEEG. We investigated 23 Na MRI parameters including total sodium concentration (TSC) and the sodium signal fraction associated with the short component of T2 * decay (f), alongside the level of metabolites N-acetyl aspartate (NAA), choline compounds (Cho), and total creatine (tCr). All measures were extracted from spherical regions of interest (ROIs) centered between two adjacent SEEG electrode contacts and z-scored against the same ROI in controls. Group comparison showed a significant increase in f only in the epileptogenic zone (EZ) compared to controls and compared to patients' propagation zone (PZ) and non-involved zone (NIZ). TSC was significantly increased in all patients' regions compared to controls. Conversely, NAA levels were significantly lower in patients compared to controls, and lower in the EZ compared to PZ and NIZ. Multiple regression analyzing the relationship between sodium and metabolites levels revealed significant relations in PZ and in NIZ but not in EZ. Our results are in agreement with the energetic failure hypothesis in epileptic regions associated with widespread tissue reorganization.


Asunto(s)
Epilepsia , Protones , Humanos , Imagen por Resonancia Magnética/métodos , Electroencefalografía/métodos , Epilepsia/diagnóstico por imagen , Epilepsia/cirugía , Epilepsia/metabolismo , Sodio/metabolismo
11.
Neuroimage ; 264: 119681, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36270623

RESUMEN

The prevailing gold standard for presurgical determination of epileptogenic brain networks is intracerebral EEG, a potent yet invasive approach. Magnetoencephalography (MEG) is a state-of-the art non-invasive method for investigating epileptiform discharges. However, it is not clear at what level the precision offered by MEG can reach that of SEEG. Here, we present a strategy for non-invasively retrieving the constituents of the interictal network, with high spatial and temporal precision. Our method is based on MEG and a combination of spatial filtering and independent component analysis (ICA). We validated this approach in twelve patients with drug-resistant focal epilepsy, thanks to the unprecedented ground truth provided by simultaneous recordings of MEG and SEEG. A minimum variance adaptive beamformer estimated the source time series and ICA was used to further decompose these time series into network constituents (MEG-ICs), each having a time series (virtual electrode) and a topography (spatial distribution of amplitudes in the brain). We show that MEG has a considerable sensitivity of 0.80 and 0.84 and a specificity of 0.93 and 0.91 for reconstructing deep and superficial sources, respectively, when compared to the ground truth (SEEG). For each epileptic MEG-IC (n = 131), we found at least one significantly correlating SEEG contact close to zero lag after correcting for multiple comparisons. All the patients except one had at least one epileptic component that was highly correlated (Spearman rho>0.3) with that of SEEG traces. MEG-ICs correlated well with SEEG traces. The strength of correlation coefficients did not depend on the depth of the SEEG contacts or the clinical outcome of the patient. A significant proportion of the MEG-ICs (n = 83/131) were localized in proximity with their maximally correlating SEEG, within a mean distance of 20±12.18mm. Our research is the first to validate the MEG-retrieved beamformer IC sources against SEEG-derived ground truth in a simultaneous MEG-SEEG framework. Observations from the present study suggest that non-invasive MEG source components may potentially provide additional information, comparable to SEEG in a number of instances.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Humanos , Magnetoencefalografía/métodos , Epilepsia/diagnóstico por imagen , Epilepsia/cirugía , Electroencefalografía/métodos , Epilepsia Refractaria/diagnóstico , Epilepsia Refractaria/cirugía , Encéfalo
12.
Hum Brain Mapp ; 43(15): 4733-4749, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35766240

RESUMEN

Recording from deep neural structures such as hippocampus noninvasively and yet with high temporal resolution remains a major challenge for human neuroscience. Although it has been proposed that deep neuronal activity might be recordable during cognitive tasks using magnetoencephalography (MEG), this remains to be demonstrated as the contribution of deep structures to MEG recordings may be too small to be detected or might be eclipsed by the activity of large-scale neocortical networks. In the present study, we disentangled mesial activity and large-scale networks from the MEG signals thanks to blind source separation (BSS). We then validated the MEG BSS components using intracerebral EEG signals recorded simultaneously in patients during their presurgical evaluation of epilepsy. In the MEG signals obtained during a memory task involving the recognition of old and new images, we identified with BSS a putative mesial component, which was present in all patients and all control subjects. The time course of the component selectively correlated with stereo-electroencephalography signals recorded from hippocampus and rhinal cortex, thus confirming its mesial origin. This finding complements previous studies with epileptic activity and opens new possibilities for using MEG to study deep brain structures in cognition and in brain disorders.


Asunto(s)
Epilepsia , Magnetoencefalografía , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Electroencefalografía/métodos , Epilepsia/diagnóstico por imagen , Epilepsia/cirugía , Humanos , Magnetoencefalografía/métodos
13.
Epilepsia ; 63(8): 1942-1955, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35604575

RESUMEN

OBJECTIVE: The virtual epileptic patient (VEP) is a large-scale brain modeling method based on virtual brain technology, using stereoelectroencephalography (SEEG), anatomical data (magnetic resonance imaging [MRI] and connectivity), and a computational neuronal model to provide computer simulations of a patient's seizures. VEP has potential interest in the presurgical evaluation of drug-resistant epilepsy by identifying regions most likely to generate seizures. We aimed to assess the performance of the VEP approach in estimating the epileptogenic zone and in predicting surgical outcome. METHODS: VEP modeling was retrospectively applied in a cohort of 53 patients with pharmacoresistant epilepsy and available SEEG, T1-weighted MRI, and diffusion-weighted MRI. Precision recall was used to compare the regions identified as epileptogenic by VEP (EZVEP ) to the epileptogenic zone defined by clinical analysis incorporating the Epileptogenicity Index (EI) method (EZC ). In 28 operated patients, we compared the VEP results and clinical analysis with surgical outcome. RESULTS: VEP showed a precision of 64% and a recall of 44% for EZVEP detection compared to EZC . There was a better concordance of VEP predictions with clinical results, with higher precision (77%) in seizure-free compared to non-seizure-free patients. Although the completeness of resection was significantly correlated with surgical outcome for both EZC and EZVEP , there was a significantly higher number of regions defined as epileptogenic exclusively by VEP that remained nonresected in non-seizure-free patients. SIGNIFICANCE: VEP is the first computational model that estimates the extent and organization of the epileptogenic zone network. It is characterized by good precision in detecting epileptogenic regions as defined by a combination of visual analysis and EI. The potential impact of VEP on improving surgical prognosis remains to be exploited. Analysis of factors limiting the performance of the actual model is crucial for its further development.


Asunto(s)
Electroencefalografía , Epilepsia , Encéfalo/diagnóstico por imagen , Encéfalo/cirugía , Electroencefalografía/métodos , Epilepsia/diagnóstico por imagen , Epilepsia/cirugía , Humanos , Imagen por Resonancia Magnética/métodos , Estudios Retrospectivos , Convulsiones/cirugía , Resultado del Tratamiento
14.
Clin Neurophysiol ; 137: 142-151, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35316623

RESUMEN

OBJECTIVE: In epilepsy, multichannel transcranial direct electrical stimulation (tDCS) is applied to decrease cortical activity through the delivery of weak currents using several scalp electrodes. We investigated the long-term effects of personalized, multisession, stereotactic-EEG (SEEG)-targeted multichannel tDCS on seizure frequency (SF) and functional connectivity (Fc) as measured by EEG in patients with drug-resistant epilepsy (DRE). METHODS: Ten patients suffering from DRE were recruited. Multichannel tDCS (Starstim, Neuroelectrics) was applied during three cycles (one cycle every 2 months) of stimulation. Each cycle consisted of five consecutive days where patients received tDCS daily in two 20 min sessions separated by 20 min. The montages were personalized to target epileptogenic area of each patient as defined by SEEG recordings. SF during and after treatment was compared with baseline. Fc changes were analysed using scalp EEG recordings. RESULTS: After the last tDCS session, five patients experienced a SF decrease of 50% or more compared with baseline (R: responders, average SF decrease of 74%). We estimated Fc changes between cycles and across R and non-responder (NR) patients. R presented a significant decrease in Fc (p < 0.05) at the third session in alpha and beta frequency bands compared to the first one. CONCLUSIONS: Multichannel tDCS guided by SEEG is a promising therapeutic approach. Significant response was associated with a decrease of Fc after three stimulation cycles. SIGNIFICANCE: Such results suggest that tDCS-induced functional plasticity changes that may underlie the clinical response.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Estimulación Transcraneal de Corriente Directa , Epilepsia Refractaria/terapia , Electroencefalografía/métodos , Humanos , Estimulación Transcraneal de Corriente Directa/métodos
15.
Clin Neurophysiol ; 133: 94-103, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34826646

RESUMEN

OBJECTIVE: Amygdala enlargement is increasingly described in association with temporal lobe epilepsies. Its significance, however, remains uncertain both in terms of etiology and its link with psychiatric disorders and of its involvement in the epileptogenic zone. We assessed the epileptogenic networks underlying drug-resistant epilepsy with amygdala enlargement and investigated correlations between clinical features, epileptogenicity and morphovolumetric amygdala characteristics. METHODS: We identified 12 consecutive patients suffering from drug-resistant epilepsy with visually suspected amygdala enlargement and available stereoelectroencephalographic recording. The epileptogenic zone was defined using the Connectivity Epileptogenicity Index. Morphovolumetric measurements were performed using automatic segmentation and co-registration on the 7TAMIbrain Amygdala atlas. RESULTS: The epileptogenic zone involved the enlarged amygdala in all but three cases and corresponded to distributed, temporal-insular, temporal-insular-prefrontal or prefrontal-temporal networks in ten cases, while only two were temporo-mesial networks. Morphovolumetrically, amygdala enlargement was bilateral in 75% of patients. Most patients presented psychiatric comorbidities (anxiety, depression, posttraumatic stress disorder). The level of depression defined by screening questionnaire was positively correlated with the extent of amygdala enlargement. CONCLUSIONS: Drug-resistant epilepsy with amygdala enlargement is heterogeneous; most cases implied "temporal plus" networks. SIGNIFICANCE: The enlarged amygdala could reflect an interaction of stress-mediated limbic network alterations and mechanisms of epileptogenesis.


Asunto(s)
Amígdala del Cerebelo/fisiopatología , Epilepsia Refractaria/fisiopatología , Epilepsias Parciales/fisiopatología , Red Nerviosa/fisiopatología , Adolescente , Adulto , Amígdala del Cerebelo/diagnóstico por imagen , Mapeo Encefálico , Niño , Preescolar , Epilepsia Refractaria/diagnóstico por imagen , Electroencefalografía , Epilepsias Parciales/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Red Nerviosa/diagnóstico por imagen , Adulto Joven
16.
Epilepsia ; 62(9): 2048-2059, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34272883

RESUMEN

OBJECTIVE: Stereo-electroencephalography (SEEG)-guided radiofrequency thermocoagulation (RF-TC) aims at modifying epileptogenic networks to reduce seizure frequency. High-frequency oscillations (HFOs), spikes, and cross-rate are quantifiable epileptogenic biomarkers. In this study, we sought to evaluate, using SEEG signals recorded before and after thermocoagulation, whether a variation in these markers is related to the therapeutic effect of this procedure and to the outcome of surgery. METHODS: Interictal segments of SEEG signals were analyzed in 38 patients during presurgical evaluation. We used an automatized method to quantify the rate of spikes, rate of HFOs, and cross-rate (a measure combining spikes and HFOs) before and after thermocoagulation. We analyzed the differences both at an individual level with a surrogate approach and at a group level with analysis of variance. We then evaluated the correlation between these variations and the clinical response to RF-TC and to subsequent resective surgery. RESULTS: After thermocoagulation, 19 patients showed a clinical improvement. At the individual level, clinically improved patients more frequently had a reduction in spikes and cross-rate in the epileptogenic zone than patients without clinical improvement (p = .002, p = .02). At a group level, there was a greater decrease of HFOs in epileptogenic and thermocoagulated zones in patients with clinical improvement (p < .05) compared to those with no clinical benefit. Eventually, a significant decrease of all the markers after RF-TC was found in patients with a favorable outcome of resective surgery (spikes, p = .026; HFOs, p = .03; cross-rate, p = .03). SIGNIFICANCE: Quantified changes in the rate of spikes, rate of HFOs, and cross-rate can be observed after thermocoagulation, and the reduction of these markers correlates with a favorable clinical outcome after RF-TC and with successful resective surgery. This may suggest that interictal biomarker modifications after RF-TC can be clinically used to predict the effectiveness of the thermocoagulation procedure and the outcome of resective surgery.


Asunto(s)
Electrocoagulación , Electroencefalografía , Biomarcadores , Humanos , Imagenología Tridimensional , Convulsiones , Resultado del Tratamiento
17.
Neuroinformatics ; 19(4): 639-647, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33569755

RESUMEN

Multicentre studies are of utmost importance to confirm hypotheses. The lack of established standards and the ensuing complexity of their data management often hamper their implementation. The Brain Imaging Data Structure (BIDS) is an initiative for organizing and describing neuroimaging and electrophysiological data. Building on BIDS, we have developed two software programs: BIDS Manager and BIDS Uploader. The former has been designed to collect, organise and manage the data and the latter has been conceived to handle their transfer and anonymisation from the partner centres. These two programs aim at facilitating the implementation of multicentre study by providing a standardised framework.


Asunto(s)
Encéfalo , Neuroimagen , Encéfalo/diagnóstico por imagen , Programas Informáticos
18.
PLoS Comput Biol ; 17(2): e1008689, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33596194

RESUMEN

Surgical interventions in epileptic patients aimed at the removal of the epileptogenic zone have success rates at only 60-70%. This failure can be partly attributed to the insufficient spatial sampling by the implanted intracranial electrodes during the clinical evaluation, leading to an incomplete picture of spatio-temporal seizure organization in the regions that are not directly observed. Utilizing the partial observations of the seizure spreading through the brain network, complemented by the assumption that the epileptic seizures spread along the structural connections, we infer if and when are the unobserved regions recruited in the seizure. To this end we introduce a data-driven model of seizure recruitment and propagation across a weighted network, which we invert using the Bayesian inference framework. Using a leave-one-out cross-validation scheme on a cohort of 45 patients we demonstrate that the method can improve the predictions of the states of the unobserved regions compared to an empirical estimate that does not use the structural information, yet it is on the same level as the estimate that takes the structure into account. Furthermore, a comparison with the performed surgical resection and the surgery outcome indicates a link between the inferred excitable regions and the actual epileptogenic zone. The results emphasize the importance of the structural connectome in the large-scale spatio-temporal organization of epileptic seizures and introduce a novel way to integrate the patient-specific connectome and intracranial seizure recordings in a whole-brain computational model of seizure spread.


Asunto(s)
Encéfalo/diagnóstico por imagen , Electrocorticografía/métodos , Convulsiones/fisiopatología , Teorema de Bayes , Mapeo Encefálico/métodos , Simulación por Computador , Electrodos , Electrodos Implantados , Humanos , Imagen por Resonancia Magnética , Modelos Neurológicos , Modelos Estadísticos , Red Nerviosa , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Convulsiones/cirugía , Resultado del Tratamiento
19.
J Neurosci Methods ; 348: 108983, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33121983

RESUMEN

BACKGROUND: Several automated parcellation atlases of the human brain have been developed over the past decades, based on various criteria, and have been applied in basic and clinical research. NEW METHOD: Here we present the Virtual Epileptic Patient (VEP) atlas that offers a new automated brain region parcellation and labeling, which has been developed for the specific use in the domains of epileptology and functional neurosurgery and is able to apply at individual patient's level. RESULTS: It comprises 162 brain regions, including 73 cortical and 8 subcortical regions per hemisphere. We demonstrate the successful application of the VEP atlas in a cohort of 50 retrospective patients. The structural organization is complemented by the functional variation of stereotactic intracerebral EEG (SEEG) signal data features establishing brain region-specific 3d-maps. COMPARISON WITH EXISTING METHODS: The VEP atlas integrates both anatomical and functional definitions in the same atlas, adapted to applications for epilepsy patients and individualizable. CONCLUSION: The covariation of structural and functional organization is the basis for current efforts of patient-specific large-scale brain network modeling exploiting virtual brain technologies for the identification of the epileptogenic regions in an ongoing prospective clinical trial EPINOV.


Asunto(s)
Epilepsia , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Epilepsia/diagnóstico por imagen , Humanos , Estudios Prospectivos , Estudios Retrospectivos
20.
Brain ; 141(10): 2966-2980, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30107499

RESUMEN

Drug-refractory focal epilepsies are network diseases associated with functional connectivity alterations both during ictal and interictal periods. A large majority of studies on the interictal/resting state have focused on functional MRI-based functional connectivity. Few studies have used electrophysiology, despite its high temporal capacities. In particular, stereotactic-EEG is highly suitable to study functional connectivity because it permits direct intracranial electrophysiological recordings with relative large-scale sampling. Most previous studies in stereotactic-EEG have been directed towards temporal lobe epilepsy, which does not represent the whole spectrum of drug-refractory epilepsies. The present study aims at filling this gap, investigating interictal functional connectivity alterations behind cortical epileptic organization and its association with post-surgical prognosis. To this purpose, we studied a large cohort of 59 patients with malformation of cortical development explored by stereotactic-EEG with a wide spatial sampling (76 distinct brain areas were recorded, median of 13.2 per patient). We computed functional connectivity using non-linear correlation. We focused on three zones defined by stereotactic-EEG ictal activity: the epileptogenic zone, the propagation zone and the non-involved zone. First, we compared within-zone and between-zones functional connectivity. Second, we analysed the directionality of functional connectivity between these zones. Third, we measured the associations between functional connectivity measures and clinical variables, especially post-surgical prognosis. Our study confirms that functional connectivity differs according to the zone under investigation. We found: (i) a gradual decrease of the within-zone functional connectivity with higher values for epileptogenic zone and propagation zone, and lower for non-involved zones; (ii) preferential coupling between structures of the epileptogenic zone; (iii) preferential coupling between epileptogenic zone and propagation zone; and (iv) poorer post-surgical outcome in patients with higher functional connectivity of non-involved zone (within- non-involved zone, between non-involved zone and propagation zone functional connectivity). Our work suggests that, even during the interictal state, functional connectivity is reinforced within epileptic cortices (epileptogenic zone and propagation zone) with a gradual organization. Moreover, larger functional connectivity alterations, suggesting more diffuse disease, are associated with poorer post-surgical prognosis. This is consistent with computational studies suggesting that connectivity is crucial in order to model the spatiotemporal dynamics of seizures.10.1093/brain/awy214_video1awy214media15833456182001.


Asunto(s)
Encéfalo/fisiopatología , Epilepsia Refractaria/fisiopatología , Epilepsias Parciales/fisiopatología , Vías Nerviosas/fisiopatología , Adolescente , Adulto , Niño , Preescolar , Epilepsia Refractaria/etiología , Electroencefalografía , Epilepsias Parciales/etiología , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Malformaciones del Desarrollo Cortical/complicaciones , Malformaciones del Desarrollo Cortical/fisiopatología , Red Nerviosa/fisiopatología , Técnicas Estereotáxicas , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...